S-Map: A Network with a Simple Self-Organization Algorithm for Generative Topographic Mappings

نویسندگان

  • Kimmo Kiviluoto
  • Erkki Oja
چکیده

The S-Map is a network with a simple learning algorithm that combines the self-organization capability of the Self-Organizing Map (SOM) and the probabilistic interpretability of the Generative Topographic Mapping (GTM). The simulations suggest that the SMap algorithm has a stronger tendency to self-organize from random initial configuration than the GTM. The S-Map algorithm can be further simplified to employ pure Hebbian learning, without changing the qualitative behaviour of the network.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Topology-Preserving Mappings for Data Visualisation

We present a family of topology preserving mappings similar to the Self-Organizing Map (SOM) and the Generative Topographic Map (GTM) . These techniques can be considered as a non-linear projection from input or data space to the output or latent space (usually 2D or 3D), plus a clustering technique, that updates the centres. A common frame based on the GTM structure can be used with different ...

متن کامل

Developing A Fault Diagnosis Approach Based On Artificial Neural Network And Self Organization Map For Occurred ADSL Faults

Telecommunication companies have received a great deal of research attention, which have many advantages such as low cost, higher qualification, simple installation and maintenance, and high reliability. However, the using of technical maintenance approaches in Telecommunication companies could improve system reliability and users' satisfaction from Asymmetric digital subscriber line (ADSL) ser...

متن کامل

Landforms identification using neural network-self organizing map and SRTM data

During an 11 days mission in February 2000 the Shuttle Radar Topography Mission (SRTM) collected data over 80% of the Earth's land surface, for all areas between 60 degrees N and 56 degrees S latitude. Since SRTM data became available, many studies utilized them for application in topography and morphometric landscape analysis. Exploiting SRTM data for recognition and extraction of topographic ...

متن کامل

Self-organization and missing values in SOM and GTM

In this paper, we study fundamental properties of the Self-Organizing Map (SOM) and the Generative Topographic Mapping (GTM), ramifications of the initialization of the algorithms and properties of the algorithms in the presence of missing data. We show that the commonly used principal component analysis (PCA) initialization of the GTM does not guarantee good learning results with high-dimensio...

متن کامل

Topological Mappings of Video and Audio Data

We review a new form of self-organizing map which is based on a nonlinear projection of latent points into data space, identical to that performed in the Generative Topographic Mapping (GTM).(1) But whereas the GTM is an extension of a mixture of experts, this model is an extension of a product of experts.(2) We show visualisation and clustering results on a data set composed of video data of l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997